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Caution: This is module is undergoing heavy development. None of the API calls are final. This software is
provided without any guarantees of correctness, you will likely encounter bugs.

If you are interested in this code, please wait for the official release to use it. In the mean time, to stay informed of
development progress you are encouraged to:

• Follow this feed for updates on releases.

• Check out the github repository .

A batteries-included toolkit for the GPU-accelerated OpenMM molecular simulation engine.

openmmtools is a Python library layer that sits on top of OpenMM to provide access to a variety of useful tools for
building full-featured molecular simulation packages.

Features include:

• high-quality Langevin integrators, including g-BAOAB, VVVR, and other splittings

• integrators that support nonequilibrium switching for free energy calculations or nonequilibrium candidate
Monte Carlo (NCMC)

• an extensible Markov chain Monte Carlo framework for mixing Monte Carlo and molecular dynamics-based
methods

• factories for generating alchemically-modified systems for absolute and relative free energy calculations

• a suite of test systems for benchmarking, validation, and debugging

You can go through the getting started tutorial for an overview of the library or the developer’s guide for information
on how to extend the existing features.
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CHAPTER 1

Installation

1.1 Installing via conda

The simplest way to install openmmtools is via the conda package manager. Packages are provided on the omnia
Anaconda Cloud channel for Linux, OS X, and Win platforms. The openmmtools Anaconda Cloud page has useful
instructions and download statistics.

If you are using the anaconda scientific Python distribution, you already have the conda package manager installed.
If not, the quickest way to get started is to install the miniconda distribution, a lightweight minimal installation of
Anaconda Python.

On linux, you can install the Python 3 version into $HOME/miniconda3 with (on bash systems):

$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash ./Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda3
$ export PATH="$HOME/miniconda3/bin:$PATH"

On osx, you want to use the osx binary

$ wget https://repo.continuum.io/miniconda/Miniconda2-latest-MacOSX-x86_64.sh
$ bash ./Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda3
$ export PATH="$HOME/miniconda3/bin:$PATH"

You may want to add the new `$PATH extension to your ~/.bashrc file to ensure Anaconda Python is used by
default. Note that openmmtools will be installed into this local Python installation, so that you will not need to worry
about disrupting existing Python installations.

Note: conda installation is the preferred method since all dependencies are automatically fetched and installed for
you.
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1.1.1 Release build

You can install the latest stable release build of openmmtools via the conda package with

$ conda config --add channels omnia --add channels conda-forge
$ conda install openmmtools

This version is recommended for all users not actively developing new algorithms for alchemical free energy calcula-
tions.

Note: conda will automatically dependencies from binary packages automatically, including difficult-to-install
packages such as OpenMM, numpy, and scipy. This is really the easiest way to get started.

1.1.2 Development build

The bleeding-edge, absolute latest, very likely unstable development build of openmmtools is pushed to binstar with
each GitHub commit, and can be obtained by

$ conda config --add channels omnia --add channels conda-forge
$ conda install openmmtools-dev

Warning: Development builds may be unstable and are generally subjected to less testing than releases. Use at
your own risk!

1.1.3 Upgrading your installation

To update an earlier conda installation of openmmtools to the latest release version, you can use conda update:

$ conda update openmmtools

4 Chapter 1. Installation
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CHAPTER 2

Getting started tutorial

This tutorial will give you an overview of what you can find in OpenMMTools and how you can use the library.

Contents

• Getting started tutorial

– Test systems, integrators, and forces

* Test systems

* Integrators

* Forces

– Alchemical transformations

* AbsoluteAlchemicalFactory and AlchemicalState

* Decoupling vs annihilating and softcore nonbonded interactions

* Softening torsions, angles, and bonds

* Alchemical functions

– Manipulating the thermodynamic state of your simulation

* Defining temperature and pressure

* Consistency checks for free

* Manipulating the thermodynamic state: Compatible thermodynamic states

* Using the ContextCache

* The global ContextCache

* Extending ThermodynamicState to control arbitrary parameters

– MCMC framework
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* Basic usage

* OpenMM integrators as MCMCMoves

* Combining Monte Carlo and dynamics

* ContextCache and Platform with MCMCMoves

– Example: A minimal implementation of a general replica-exchange simulation class

* Parallel tempering

* Hamiltonian replica exchange + parallel tempering

* Hamiltonian replica exchange + parallel tempering mixing Monte Carlo and dynamics

2.1 Test systems, integrators, and forces

In its basic usage, OpenMMTools extends OpenMM by providing pre-packaged systems, integrators of force objects
that are not natively implemented in OpenMM.

2.1.1 Test systems

The testsystems module comes with many simulation-ready molecular systems (from analytically-solvable systems to
a kinase in explicit solvent) that can be useful for prototyping, validation, testing, and benchmarking. The code below
creates a TIP3P water cubic box of 2nm side using PME.

from simtk import openmm, unit
from openmmtools import testsystems

water_box = testsystems.WaterBox(box_edge=2.0*unit.nanometer)
system = water_box.system # An OpenMM System object.
positions = water_box.positions # Initial coordinates for the system with associated
→˓units.

You can use select a subset of the system atoms using the atom selection domain-specific language (DSL) implemented
in MDTraj. For example, the following snippet create a T4-Lysozyme system in implicit OBC GBSA solvent bound
to a p-xylene molecule, and finds the atom indices corresponding to the heavy atoms of p-xylene and few residues
surrounding the binding site of T4-Lysozyme.

lysozyme_pxylene = testsystems.LysozymeImplicit()
t4_system = lysozyme_pxylene.system
pxylene_dsl = '(resname TMP) and (mass > 1.5)' # Select heavy atoms of p-xylene.
binding_site_dsl = ('(resi 77 or resi 86 or resi 101 or resi 110 or '

' resi 117 or resi 120) and (mass > 1.5)')
pxylene_atom_indices = lysozyme_pxylene.mdtraj_topology.select(pxylene_dsl).tolist()
binding_site_atom_indices = lysozyme_pxylene.mdtraj_topology.select(binding_site_dsl).
→˓tolist()

2.1.2 Integrators

The systems created by testsystems can then be propagated in the usual way with OpenMM. The integrators
module provide several high-quality integrators for equilibrium and non-equilibrium simulations in OpenMM.

6 Chapter 2. Getting started tutorial
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from openmmtools import integrators

integrator = integrators.LangevinIntegrator(temperature=298.0*unit.kelvin,
collision_rate=1.0/unit.picoseconds,
timestep=1.0*unit.femtoseconds)

context = openmm.Context(t4_system, integrator)
context.setPositions(lysozyme_pxylene.positions)
integrator.step(n_steps)

Our LangevinIntegrator allows you to specify the splitting used to carry out the numerical integration. By de-
fault, OpenMMTools will construct a BAOAB integrator (i.e. with V R O R V splitting), which was shown empirically
to add a very small integration error in configurational space, but other solutions are possible.

integrator = integrators.LangevinIntegrator(splitting="V0 V1 R R O R R V1 R R O R R
→˓V1 V0",

measure_shadow_work=True, measure_
→˓heat=True)
context = openmm.Context(t4_system, integrator)
context.setPositions(lysozyme_pxylene.positions)
integrator.step(n_steps)

# Obtain the dissipated heat accumulated during Langevin dynamics in molar energy
→˓units.
heat = integrator.get_heat()

The integrator above, for example, implements the geodesic-BAOAB Langevin integrator with solute-solvent split-
ting, and it collects statistics on the dissipated heat and the shadow work during the propagation (at the cost of a
computational overhead).

2.1.3 Forces

The forces module is still under construction, but it already provides a few convenient utility functions and force
objects. Let’s create a T4-Lysozyme system in implicit OBC GBSA solvent bound to a p-xylene and add a harmonic
restraint between the two molecules.

from openmmtools import forces

harmonic_restraint = forces.HarmonicRestraintForce(spring_constant=0.2*unit.
→˓kilocalories_per_mole/unit.angstrom**2,

restrained_atom_indices1=binding_
→˓site_atom_indices,

restrained_atom_indices2=pxylene_
→˓atom_indices)
t4_system.addForce(harmonic_restraint)

The restraint force above will place a single harmonic potential between the centers of mass of the heavy atoms of the
p-xylene molecule and the binding site of T4-Lysozyme.

The function forces.find_forces() provides a convenient way to search for particular force objects in the
OpenMM System.

# Retrieve our harmonic restraint force.
forces.find_forces(t4_system, force_type=forces.HarmonicRestraintForce)

# Find all forces that inherit from an OpenMM CustomBondForce object.
forces.find_forces(t4_system, force_type=openmm.CustomBondForce, include_
→˓subclasses=True) (continues on next page)
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(continued from previous page)

# Search for force names using regular expressions.
# Return all openmm.HarmonicBondForce, openmm.HarmonicAngleForce,
# and forces.HarmonicRestraintForce force objects.
forces.find_forces(t4_system, '.*Harmonic.*')

2.2 Alchemical transformations

The alchemy module provides helper classes to perform alchemical transformations with OpenMM.

2.2.1 AbsoluteAlchemicalFactory and AlchemicalState

The AbsoluteAlchemicalFactory class prepare OpenMM System objects for alchemical manipulation. Let’s
create an alchemical system that we can use to alchemically decouple p-xylene from T4-lysozyme’s binding pocket.

>>> from openmmtools import alchemy

>>> # Create the reference OpenMM System that will be alchemically modified.
>>> lysozyme_pxylene = testsystems.LysozymeImplicit()
>>> t4_system = lysozyme_pxylene.system

>>> # Define the region of the System to be alchemically modified.
>>> pxylene_atoms = lysozyme_pxylene.mdtraj_topology.select('resname TMP')
>>> alchemical_region = alchemy.AlchemicalRegion(alchemical_atoms=pxylene_atoms)

>>> factory = alchemy.AbsoluteAlchemicalFactory()
>>> alchemical_system = factory.create_alchemical_system(t4_system, alchemical_region)

At this point, the p-xylene in alchemical System is in its interacting state and it can be then simulated normally

>>> integrator = integrators.LangevinIntegrator()
>>> context = openmm.Context(alchemical_system, integrator)
>>> context.setPositions(lysozyme_pxylene.positions)
>>> integrator.step(n_steps)

The alchemical degrees of freedom of the Hamiltonian can be controlled during the simulation through the
AlchemicalState class.

>>> alchemical_state = alchemy.AlchemicalState.from_system(alchemical_system)
>>> alchemical_state.lambda_electrostatics = 0.0
>>> alchemical_state.lambda_sterics = 0.5
>>> alchemical_state.apply_to_context(context)

The snippet above modifies the simulated System to completely turn off the electrostatics interaction and halve the
Lennard-Jones potential between p-xylene and its environment.

Note: In OpenMMTools, the convention is to have the interacting state at lambda=1 and the non-interacting state at
lambda=0. Some packages adopt the opposite convention.

8 Chapter 2. Getting started tutorial
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Note: The AbsoluteAlchemicalFactory class is currently specialized for absolute calculations in the sense
that it cannot prepare an OpenMM System to have an atom changing its element or turn on part of a molecule while
decoupling another set of atoms. We’re planning to provide these capabilities in the near future.

2.2.2 Decoupling vs annihilating and softcore nonbonded interactions

By default, the alchemical System is prepared to annihilate electrostatics (i.e. turn off the alchemical atoms’ charges)
and decouple the sterics (i.e. preserve the intra-molecular Lennard-Jones interactions), but you can maintain the intra-
molecular charges, for example, by configuring the alchemical region.

alchemical_region = alchemy.AlchemicalRegion(alchemical_atoms=pxylene_atoms,
annihilate_electrostatics=True)

alchemical_system = factory.create_alchemical_system(t4_system, alchemical_region)

Similarly, you can set specific softcore parameters for the sterics and electrostatics interactions (see the API documen-
tation for a detailed explanation of the parameters).

alchemical_region = alchemy.AlchemicalRegion(alchemical_atoms=pxylene_atoms,
softcore_alpha=0.5, softcore_c=6)

2.2.3 Softening torsions, angles, and bonds

Beside nonbonded interactions, it is possible to modify other terms of the potentials. The following alchemical region
is configured to modify the OpenMM System to enable torsion softening of all the p-xylene dihedrals. The Hamilto-
nian parameter controlling the torsion, angles, and bond potential terms can be controlled with AlchemicalState
in the same way as with nonbonded interactions.

alchemical_region = alchemy.AlchemicalRegion(alchemical_atoms=pxylene_atoms,
alchemical_torsions=True)

alchemical_system = factory.create_alchemical_system(t4_system, alchemical_region)
context = openmm.Context(alchemical_system, integrators.LangevinIntegrator())

alchemical_state = alchemy.AlchemicalState.from_system(alchemical_system)
alchemical_state.lambda_torsions = 0.8
alchemical_state.apply_to_context(context)

2.2.4 Alchemical functions

Finally you can enslave the degrees of freedom of the Hamiltonian to a variable through a custom function. The code
below configure the AlchemicalState to turn off first electrostatic and the steric interactions one after the other
as a generic variable called lambda goes from 1.0 to 0.0.

# Enslave lambda_sterics and lambda_electrostatics to a generic lambda variable.
alchemical_state.set_function_variable('lambda', 1.0)

# The functions here turn off first electrostatic and the steric interactions
# in sequence as lambda goes from 1.0 to 0.0.
f_electrostatics = '2*(lambda-0.5)*step(lambda-0.5)'
f_sterics = '2*lambda*step_hm(0.5-lambda) + step_hm(lambda-0.5)'
alchemical_state.lambda_electrostatics = alchemy.AlchemicalFunction(f_electrostatics)

(continues on next page)

2.2. Alchemical transformations 9



openmmtools Documentation

(continued from previous page)

alchemical_state.lambda_sterics = alchemy.AlchemicalFunction(f_sterics)

alchemical_state.set_function_variable('lambda', 0.75)
assert alchemical_state.lambda_electrostatics == 0.5
assert alchemical_state.lambda_sterics == 1.0

alchemical_state.set_function_variable('lambda', 0.25)
assert alchemical_state.lambda_electrostatics == 0.0
assert alchemical_state.lambda_sterics == 0.5

# Set the alchemical state of the simulated system.
alchemical_state.apply_to_context(context)

In the example above, step_hm is the Heaviside step function with half-maximum convention (i.e. step_hm(0.0)
== 0.5), while step(0.0) == 0.0. All the functions in the Python standard module math can be specified in
the string.

2.3 Manipulating the thermodynamic state of your simulation

The classes in the states module provide a framework to decouple the degrees of freedom (or parameters) of the
simulated thermodynamic state from their implementation details in OpenMM.

2.3.1 Defining temperature and pressure

The fundamental class in the states module is ThermodynamicState. This class hold a System object and
controls the ensemble parameters of temperature and pressure. For example, the code below creates a water box in
NVT ensemble at 298 K.

>>> from openmmtools import states

>>> waterbox = testsystems.WaterBox(box_edge=2*unit.nanometers)
>>> thermo_state = states.ThermodynamicState(system=waterbox.system,
... temperature=298.0*unit.kelvin)
>>> thermo_state.volume.format('%.1f')
'8.0 nm**3'
>>> assert thermo_state.pressure is None

The volume is computed from the box vectors associated to the System object. To convert the system to an NPT
state at 298 K and 1 atm pressure, you can set the pressure attribute.

thermo_state.pressure = 1.0*unit.atmosphere
assert thermo_state.volume is None

Note that the operation of specifying a constant pressure result in a null volume, as the volume will fluctuate during the
simulation. You can then create an OpenMM Context object that is guaranteed to be in the specified thermodynamic
state.

>>> integrator = integrators.LangevinIntegrator(temperature=298.0*unit.kelvin)
>>> context = thermo_state.create_context(integrator)

(continues on next page)
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(continued from previous page)

>>> context.setPositions(waterbox.positions)
>>> integrator.step(n_steps)

>>> # ThermodynamicState takes care of adding and configuring a
→˓MonteCarloBarostatForce
>>> # to keep the pressure at 1atm.
>>> force_index, barostat = forces.find_forces(context.getSystem(),
... openmm.MonteCarloBarostat,
... only_one=True)
>>> barostat.getDefaultTemperature().format('%.1f')
'298.0 K'
>>> print(barostat.getDefaultPressure())
1.01325 bar

2.3.2 Consistency checks for free

Using the ThermodynamicState class means to take advantage of several consistency checks that can avoid bugs
in your application that can be very hard to detect in the first place and then to track down (we speak from personal
experience).

For example, trying to create a Context using Langevin integrator set to the incorrect temperature or trying to add a
barostat to a system in vacuum raises an error.

>>> thermo_state.temperature = 298.0*unit.kelvin
>>> integrator = integrators.LangevinIntegrator(temperature=310.0*unit.kelvin)
>>> thermo_state.create_context(integrator)
Traceback (most recent call last):
...
ThermodynamicsError: Integrator is coupled to a heat bath at a different temperature.

>>> vacuum_system = testsystems.TolueneVacuum().system
>>> thermo_state = states.ThermodynamicState(system=vacuum_system,
... temperature=298.15*unit.kelvin,
... pressure=1.0*unit.atmosphere)
Traceback (most recent call last):
...
ThermodynamicsError: Non-periodic systems cannot have a barostat.

While, if you create a Context with an integrator that is not coupled to a heat bath, ThermodynamicState will
take care of adding an AndersenThermostat.

>>> # Use a non-thermostated integrator.
>>> thermo_state_nvt = states.ThermodynamicState(system=vacuum_system,
... temperature=298.15*unit.kelvin)
>>> integrator = openmm.VerletIntegrator(2.0*unit.femtoseconds)
>>> context_nvt = thermo_state_nvt.create_context(integrator)
>>> len(forces.find_forces(context_nvt.getSystem(), openmm.AndersenThermostat))
1

2.3.3 Manipulating the thermodynamic state: Compatible thermodynamic states

Once a Context has been created, is is possible to change the simulation thermodynamic state through the method
ThermodynamicState.apply_to_context(). The method will mask the implementation details and take

2.3. Manipulating the thermodynamic state of your simulation 11
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care of modifying all the OpenMM forces and integrators that depend on the temperature and pressure parameters. In
this sense, the ThermodynamicState class decouples the representation of the thermodynamic parameters from
their implementation details.

>>> # Modify temperature and pressure of a system employing a Langevin
>>> # thermostat and a Monte Carlo barostat.
>>> thermo_state.temperature = 400.0*unit.kelvin
>>> thermo_state.pressure = 1.2*unit.bar
>>> thermo_state.apply_to_context(context)
>>> context.getIntegrator().getTemperature().format('%.1f')
'400.0 K'
>>> context.getParameter(openmm.MonteCarloBarostat.Pressure())
1.2
>>> # The MonteCarloBarostat requires also a temperature parameter for the acceptance
→˓probability.
>>> context.getParameter(openmm.MonteCarloBarostat.Temperature())
400.0

>>> # Modify the temperature of a system using an Andersen thermostat.
>>> thermo_state_nvt.temperature = 400.0*unit.kelvin
>>> thermo_state_nvt.apply_to_context(context_nvt)
>>> context_nvt.getParameter(openmm.AndersenThermostat.Temperature())
400.0

A ThermodynamicState can be applied to any Context that was created from a compatible thermodynamic
state.

Important: Two ThermodynamicState objects x, y are compatible if a context created by x can be modi-
fied to be in the y thermodynamic state through y.apply_to_context(context) and viceversa.

This is not always possible in OpenMM because of some implementation details related to optimizations. In short,
two ThermodynamicState``s are compatible if they have the same ``System and they are
in the same ensemble (i.e. NVT and NPT thermodynamic states are incompatible).

>>> alanine = testsystems.AlanineDipeptideExplicit()
>>> state1 = states.ThermodynamicState(alanine.system, 273*unit.kelvin)
>>> state2 = states.ThermodynamicState(alanine.system, 310*unit.kelvin)
>>> state1.is_state_compatible(state2)
True

# Switch state1 from NVT to NPT ensemble.
>>> state1.pressure = 1.0*unit.atmosphere
>>> state1.is_state_compatible(state2)
False

Luckily, the class openmmtools.cache.ContextCache takes care of checking for compatibility and decide whether it’s
possible to modifying a previously created Context object or if it is necessary to create a separate one.

2.3.4 Using the ContextCache

Important: Using ContextCache is the recommended way of creating Context objects within the OpenMM-
Tools framework.

12 Chapter 2. Getting started tutorial
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The openmmtools.cache.ContextCache class has the role of maintaining the minimum number of compatible
Contexts allocated on the GPU, allowing virtually an infinite number of thermodynamic states to be simulated on
finite-memory hardware, and minimizing the number of expensive Context creation/destruction.

To obtain a Context simply use the ContextCache.get_context() method.

from openmmtools import cache

alanine = testsystems.AlanineDipeptideExplicit()
thermo_state = states.ThermodynamicState(alanine.system, 310*unit.kelvin)
integrator = integrators.LangevinIntegrator(temperature=310*unit.kelvin)

context_cache = cache.ContextCache()
context, context_integrator = context_cache.get_context(thermo_state,

integrator)
context.setPositions(alanine.positions)
context_integrator.step(n_steps)

Note that get_context() returns also an Integrator that may be a different instance of the integrator
passed as a parameter. This is because an OpenMM Context can be associated with a single integrator instance, thus
reusing a previously instantiated Context requires using the previously instantiated integrator as well. Nevertheless,
context_integrator is guaranteed to be identical to integrator.

Requesting a context in a compatible ThermodynamicState returns the same Context object correctly config-
ured to simulate the requested thermodynamic state.

>>> compatible_state = states.ThermodynamicState(alanine.system, 400*unit.kelvin)
>>> compatible_integrator = integrators.LangevinIntegrator(temperature=400*unit.
→˓kelvin)
>>> compatible_context, compatible_integrator = context_cache.get_context(compatible_
→˓state,
... compatible_
→˓integrator)
>>> id(context) == id(compatible_context)
True
>>> len(context_cache) # The number of Contexts maintained in memory.
1
>>> compatible_integrator.getTemperature().format('%.1f')
'400.0 K'

Requesting a context in a different ensemble causes the creation of another Context.

>>> thermo_state_npt = copy.deepcopy(thermo_state)
>>> thermo_state_npt.pressure = 1.0*unit.atmosphere
>>> integrator = integrators.LangevinIntegrator(temperature=thermo_state_npt.
→˓temperature)
>>> context_npt, integrator_npt = context_cache.get_context(thermo_state_npt,
→˓integrator)
>>> id(context) == id(context_npt)
False
>>> len(context_cache)
2

You can set a capacity and a time to live for contexts. The time to live is currently measured in number of accesses to
the ContextCache.

>>> context_cache = cache.ContextCache(capacity=1, time_to_live=5)
>>> integrator = openmm.VerletIntegrator(1.0*unit.femtosecond)

(continues on next page)
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(continued from previous page)

>>> context1, integrator1 = context_cache.get_context(thermo_state,
... copy.deepcopy(integrator))
>>> context2, integrator2 = context_cache.get_context(thermo_state_npt,
... copy.deepcopy(integrator))
>>> len(context_cache)
1

In the example above, the maximum capacity of the cache is 1, so the first context is deallocated to make space for the
second Context created with the incompatible thermodynamic state.

Finally, you can force the ContextCache to create contexts on a specific platform.

platform = openmm.Platform.getPlatformByName('Reference')
context_cache = cache.ContextCache(platform=platform)

2.3.5 The global ContextCache

The openmmtools.cache module exposes a global variable that provides a shared ContextCache for all the classes
in the framework.

cache.global_context_cache.platform = openmm.Platform.getPlatformByName('CPU')
cache.global_context_cache.capacity = 2
cache.global_context_cache.time_to_live = 10
verlet_integrator = openmm.VerletIntegrator(1.0*unit.femtosecond)
context, integrator = cache.global_context_cache.get_context(thermo_state,

verlet_integrator)

Usually, you’ll want to create a Context using the global_context_cache to minimize the number of created
contexts overall. This is, for example, the context cache used by default by all the MCMCMove objects internally,
which we’ll touch shortly.

2.3.6 Extending ThermodynamicState to control arbitrary parameters

It is possible to extend the ThermodynamicState to manipulate other thermodynamic parameters of the System
through the states.CompoundThermodynamicState class and one or more composable states. An example
may clarify this. Remember the alchemy.AlchemicalState class we discussed above? AlchemicalState
is a composable state.

# Prepare T4-Lysozyme + p-xylene system for alchemical perturbation.
factory = alchemy.AbsoluteAlchemicalFactory()
alchemical_region = alchemy.AlchemicalRegion(alchemical_atoms=pxylene_atoms)
alchemical_system = factory.create_alchemical_system(t4_system, alchemical_region)

# Define the basic thermodynamic state of the system.
thermo_state = states.ThermodynamicState(alchemical_system, temperature=298*unit.
→˓kelvin)

# Extend the definition of thermodynamic state to consider alchemical parameters as
→˓well.
alchemical_state = alchemy.AlchemicalState.from_system(alchemical_system)
compound_state = states.CompoundThermodynamicState(thermodynamic_state=thermo_state,

composable_states=[alchemical_
→˓state])

14 Chapter 2. Getting started tutorial
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At this point, compound_state is both a ThermodynamicState and an AlchemicalState in the sense that
it exposes the interface to modify the thermodynamic parameters controlled by both objects.

context = compound_state.create_context(integrators.LangevinIntegrator())
compound_state.temperature = 350*unit.kelvin # Increase temperature of simulation.
compound_state.lambda_sterics = 0.2 # Soften torsions.
compound_state.apply_to_context(context)

Obviously, CompoundThermodynamicState is not compatible exclusively with AlchemicalState but with
any object implementing the states.IComposableState interface. A quick way to define your own composable
state is described in the developer’s tutorial.

The power of this abstraction will become evident when we’ll implement a simple replica-exchange algorithm at the
end of the tutorial.

2.4 MCMC framework

The Markov chain Monte Carlo (MCMC) framework implemented in the mcmc module take advantage of the ther-
modynamic state objects described above to provide an easy way to experiment with different propagation schemes
mixing Monte Carlo moves and dynamics.

2.4.1 Basic usage

The basic object in the module is the mcmc.MCMCMove abstract class that provides a common interface for both
integrators and Monte Carlo to propagate the state of the system.

from openmmtools import mcmc

# Define the thermodynamic state of the T4-Lysozyme + p-xylene system
thermo_state = states.ThermodynamicState(t4_system, temperature=300*unit.kelvin)

# Create a SamplerState system holding the coordinates of the system.
sampler_state = states.SamplerState(positions=lysozyme_pxylene.positions)

# Propagate the system with a GHMC integrator.
ghmc_move = mcmc.GHMCMove(timestep=1.0*unit.femtosecond, n_steps=n_steps)
ghmc_move.apply(thermo_state, sampler_state)

The SamplerState object in the snippet above holds the configurational degrees of freedom of the System (e.g.,
positions, velocities, and eventually box vectors). The sampler state is updated by MCMCMove.apply to hold the
coordinates and velocities after 1000 steps of GHMC integration. Note however that, in princple, the framework
allows an MCMCMove to change also the thermodynamic degrees of freedom in thermo_state.

2.4.2 OpenMM integrators as MCMCMoves

The mcmc module provides a few integrators in the form of an MCMCMove, including openmmtools.
integrators.LangevinIntegrator. Casting integrators in the form of an MCMCMove object makes it easy
to combine them with Monte Carlo techniques. Moreover, integrator ‘‘MCMCMove‘‘s provide a few extra features
such as automatic recovery after a NaN.

2.4. MCMC framework 15
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langevin_move = mcmc.LangevinSplittingDynamicsMove(splitting='V R O R V',
n_steps=n_steps,
n_restart_attempts=5)

langevin_move.apply(thermo_state, sampler_state)

Propagating your system through Langevin dynamics has always a non-zero probability of incurring into a NaN
error. When this happens, instead of crashing, the Langevin move above will restore the state of the System before
integrating and try again, relying on the stochastic component of the propagation to obtain a different solution. This is
repeated to a maximum of 5 times before giving up and throwing an error. The raised exception exposes a method to
serialize the simulation objects automatically for further debugging.

try:
langevin_move.apply(thermo_state, sampler_state)

except mcmc.IntegratorMoveError as e:
# This saves to disk the OpenMM System, Integrator, and State objects.
e.serialize_error(path_files_prefix='debug/langevin')

When a NaN occurr, the code above serializes the OpenMM System, Integrator, and State ob-
jects on disk at debug/langevin-system.xml, debug/langevin-integrator.xml, and debug/
langevin-state.xml respectively.

This feature can easily be extended to other integrators that are not explicitly provided in the mcmc module.

integrator = integrators.HMCIntegrator(timestep=1.0*unit.femtosecond)
HMC_move = mcmc.IntegratorMove(integrator, n_steps=n_steps, n_restart_attempts=4)

2.4.3 Combining Monte Carlo and dynamics

Combining and mixing multiple MCMCMove is usually performed through the mcmc.SequenceMove object

sequence_move = mcmc.SequenceMove(move_list=[
mcmc.MCDisplacementMove(atom_subset=pxylene_atoms),
mcmc.MCRotationMove(atom_subset=pxylene_atoms),
mcmc.LangevinSplittingDynamicsMove(timestep=2.0*unit.femtoseconds, n_steps=n_

→˓steps,
reassign_velocities=True, n_restart_attempts=6)

])

sequence_move.apply(thermo_state, sampler_state)

The MCMCMove above performs in sequence a Metropolized Monte Carlo rigid translation and rotation of the p-xylene
molecule followed by Langevin dynamics after randomizing the velocities according to the Boltzmann distribution at
the temperature of thermo_state.

2.4.4 ContextCache and Platform with MCMCMoves

All MCMCMove objects implemented in OpenMMTools accept a context_cache in the constructor. This param-
eter defaults to mmtools.cache.global_context_cache, but you can pass a local cache to trigger other
behaviors.

local_cache = cache.ContextCache(platform=openmm.Platform.getPlatformByName('CPU'))
dummy_cache = cache.DummyContextCache() # Disable caching.
move = mcmc.SequenceMove(move_list=[

mcmc.MCDisplacementMove(atom_subset=pxylene_atoms, context_cache=local_cache),

(continues on next page)
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mcmc.MCRotationMove(atom_subset=pxylene_atoms, context_cache=dummy_cache),
mcmc.LangevinSplittingDynamicsMove(n_steps=n_steps) # Uses global_context_cache.

])

In the example above, applying the move will perform an MC translation of the ligands atom using a local
ContextCache that runs on the CPU, then an MC rotation using the DummyContextCache, which recreates
context every time effectively deactivating caching, and finally propagates the system with Langevin dynamics using
the global cache on the fastest platform available.

2.5 Example: A minimal implementation of a general replica-
exchange simulation class

Our most recent enhanced-sampling facilities are currently hosted in YANK, and they are still waiting to be moved to
OpenMMTools. However, the following minimal implementation of a replica exchange simulation class should give
you an idea of what is possible to do when taking advantage of the full framework.

import math
from random import random, randint

class ReplicaExchange:

def __init__(self, thermodynamic_states, sampler_states, mcmc_move):
self._thermodynamic_states = thermodynamic_states
self._replicas_sampler_states = sampler_states
self._mcmc_move = mcmc_move

def run(self, n_iterations=1):
for iteration in range(n_iterations):

self._mix_replicas()
self._propagate_replicas()

def _propagate_replicas(self):
# _thermodynamic_state[i] is associated to the replica configuration in _

→˓replicas_sampler_states[i].
for thermo_state, sampler_state in zip(self._thermodynamic_states, self._

→˓replicas_sampler_states):
self._mcmc_move.apply(thermo_state, sampler_state)

def _mix_replicas(self, n_attempts=1):
# Attempt to switch two replicas at random. Obviously, this scheme can be

→˓improved.
for attempt in range(n_attempts):

# Select two replicas at random.
i = randint(0, len(self._thermodynamic_states)-1)
j = randint(0, len(self._thermodynamic_states)-1)
sampler_state_i, sampler_state_j = (self._replicas_sampler_states[k] for

→˓k in [i, j])
thermo_state_i, thermo_state_j = (self._thermodynamic_states[k] for k in

→˓[i, j])

(continues on next page)
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# Compute the energies.
energy_ii = self._compute_reduced_potential(sampler_state_i, thermo_state_

→˓i)
energy_jj = self._compute_reduced_potential(sampler_state_j, thermo_state_

→˓j)
energy_ij = self._compute_reduced_potential(sampler_state_i, thermo_state_

→˓j)
energy_ji = self._compute_reduced_potential(sampler_state_j, thermo_state_

→˓i)

# Accept or reject the swap.
log_p_accept = - (energy_ij + energy_ji) + energy_ii + energy_jj
if log_p_accept >= 0.0 or random() < math.exp(log_p_accept):

# Swap states in replica slots i and j.
self._thermodynamic_states[i] = thermo_state_j
self._thermodynamic_states[j] = thermo_state_i

def _compute_reduced_potential(self, sampler_state, thermo_state):
# Obtain a Context to compute the energy with OpenMM. Any integrator will do.
context, integrator = cache.global_context_cache.get_context(thermo_state)
# Compute the reduced potential of the sampler_state configuration
# in the given thermodynamic state.
sampler_state.apply_to_context(context)
return thermo_state.reduced_potential(context)

The first observation is that the bulk of the code complexity lies in the replica swapping code, while most of the other
details are handled by the specialized classes of the framework. From a software engineering perspective, this is a
good sign as it is compatible with the single responsibility principle.

Secondly, the class can be used to implement a variety of algorithm. A few examples follow.

2.5.1 Parallel tempering

To run a parallel tempering simulation, we just have initialize the ReplicaExchange object with a list
of thermodynamic states that vary in temperature. You can make use of the utility function states.
create_thermodynamic_state_protocol to initialize efficiently a list of ThermodynamicState or
CompoundThermodynamicState.

>>> # Initialize thermodynamic states at different temperatures.
>>> host_guest = testsystems.HostGuestVacuum()
>>> protocol = {'temperature': [300, 310, 330, 370, 450] * unit.kelvin}
>>> thermo_states = states.create_thermodynamic_state_protocol(host_guest.system,
→˓protocol)

>>> # Initialize replica initial configurations.
>>> sampler_states = [states.SamplerState(positions=host_guest.positions)
... for _ in thermo_states]

>>> # Propagate the replicas with Langevin dynamics.
>>> langevin_move = mcmc.LangevinSplittingDynamicsMove(timestep=2.0*unit.femtosecond,
... n_steps=n_steps)

>>> # Run the parallel tempering simulation.
>>> parallel_tempering = ReplicaExchange(thermo_states, sampler_states, langevin_move)
>>> parallel_tempering.run()
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This example creates 5 replicas starting from the same configurations but at the temperatures of 300, 310, . . . , 450 K,
and propagates the system with Langevin dynamics.

2.5.2 Hamiltonian replica exchange + parallel tempering

Let’s say we want to implement an enhanced sampling scheme that increases the temperature while alchemically
softening part of a system.

>>> # Prepare the T4 Lysozyme + p-xylene system for alchemical modification.
>>> guest_atoms = host_guest.mdtraj_topology.select('resname B2')
>>> alchemical_region = alchemy.AlchemicalRegion(alchemical_atoms=guest_atoms)
>>> factory = alchemy.AbsoluteAlchemicalFactory()
>>> alchemical_system = factory.create_alchemical_system(host_guest.system,
→˓alchemical_region)

>>> # Initialize compound thermodynamic states at different temperatures and
→˓alchemical states.
>>> protocol = {'temperature': [300, 310, 330, 370, 450] * unit.kelvin,
... 'lambda_electrostatics': [1.0, 0.5, 0.0, 0.0, 0.0],
... 'lambda_sterics': [1.0, 1.0, 1.0, 0.5, 0.0]}
>>> alchemical_state = alchemy.AlchemicalState.from_system(alchemical_system)
>>> compound_states = states.create_thermodynamic_state_protocol(
... alchemical_system, protocol=protocol, composable_states=[alchemical_state])

>>> # Run the combined Hamiltonian replica exchange + parallel tempering simulation.
>>> hrex_tempering = ReplicaExchange(compound_states, sampler_states, langevin_move)

2.5.3 Hamiltonian replica exchange + parallel tempering mixing Monte Carlo and
dynamics

Finally, let’s mix Monte Carlo and dynamics for propagation.

>>> sequence_move = mcmc.SequenceMove(move_list=[
... mcmc.MCDisplacementMove(atom_subset=pxylene_atoms),
... mcmc.MCRotationMove(atom_subset=pxylene_atoms),
... mcmc.LangevinSplittingDynamicsMove(timestep=2.0*unit.femtoseconds, n_steps=n_
→˓steps,
... reassign_velocities=True, n_restart_
→˓attempts=6)
... ])

>>> # Run the combined Hamiltonian replica exchange + parallel tempering simulation
>>> # using a combination of Monte Carlo moves and Langevin dynamics.
>>> hrex_tempering = ReplicaExchange(compound_states, sampler_states, sequence_move)

2.5. Example: A minimal implementation of a general replica-exchange simulation class 19
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CHAPTER 3

Advanced features and developer’s tutorial

This tutorial describes more advanced features that can be useful for people developing their software using or extend-
ing OpenMMTools.

Contents

• Advanced features and developer’s tutorial

– Using and implementing integrator and force objects

* Copy and serialization utilities

* Integrators coupled to a heat bath

* Using standard Python attribute in custom integrators and forces

– Handling (compound) thermodynamic states

* Modifying a System object buried in a ThermodynamicState

* Implementation details of compatibility checks

* Copying and initialization of multiple thermodynamic states

– Implementing a new ComposableState

* The IComposableInterface

* ComposableStates that control a Force global parameter

* Computing the reduced potential of one configuration at multiple thermodynamic states

– Implementing a new MCMCMove

* The MCMCMove interface

* OpenMM integrators that modify the thermodnamic state

* Metropolized MCMCMoves
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3.1 Using and implementing integrator and force objects

3.1.1 Copy and serialization utilities

The integrators and forces in OpenMMTools are usually implemented by extending custom classes in OpenMM. For
example, the declaration of our LangevinIntegrator and the HarmonicRestraintForce goes boils down
to

class LangevinIntegrator(mmtools.utils.RestorableOpenMMObject, openmm.
→˓CustomIntegrator):

pass

class HarmonicRestraintForce(mmtools.utils.RestorableOpenMMObject, openmm.
→˓CustomCentroidBondForce):

pass

The purpose of inheriting from openmmtools.utils.RestorableOpenMMObject class has to do with copies and seri-
alization. Without RestorableOpenMMObject, these objects can still be copied and go through the standard
serialization and deserialization in OpenMM without errors

from simtk import openmm, unit

class VelocityVerlet(openmm.CustomIntegrator):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.addComputePerDof("x", "x+dt*v")
self.addComputePerDof("v", "v+0.5*dt*f/m")

def my_method(self):
return 0.0

integrator = VelocityVerlet(1*unit.femtosecond)
copied_integrator = copy.deepcopy(integrator)
integrator_serialization = openmm.XmlSerializer.serialize(integrator)
deserialized_integrator = openmm.XmlSerializer.deserialize(integrator_serialization)

However, copies and serializations in OpenMM are performed at the C++ level, and thus they don’t keep track of the
Python class and methods.

>>> print(type(copied_integrator))
<class 'simtk.openmm.openmm.CustomIntegrator'>

>>> deserialized_integrator.my_method()
Traceback (most recent call last):
...
AttributeError: type object 'object' has no attribute '__getattr__'

Inheriting from openmmtools.utils.RestorableOpenMMObject, allows you to easily recover the original in-
terface after copying or deserializing. This happens automatically for copies, but you’ll have to use
RestorableOpenMMObject.restore_interface() after deserialization.

from openmmtools import utils

class VelocityVerlet(utils.RestorableOpenMMObject, openmm.CustomIntegrator):

(continues on next page)
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(continued from previous page)

def __init(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.addComputePerDof("x", "x+dt*v")
self.addComputePerDof("v", "v+0.5*dt*f/m")

def my_method(self):
return 0.0

integrator = VelocityVerlet(1*unit.femtosecond)

>>> copied_integrator = copy.deepcopy(integrator)
>>> isinstance(copied_integrator, VelocityVerlet)
True

>>> integrator_serialization = openmm.XmlSerializer.serialize(integrator)
>>> deserialized_integrator = openmm.XmlSerializer.deserialize(integrator_
→˓serialization)
>>> utils.RestorableOpenMMObject.restore_interface(deserialized_integrator)
True
>>> deserialized_integrator.my_method()
0.0

For forces, the function openmmtools.forces.find_forces(system) automatically calls
RestorableOpenMMObject.restore_interface() on all system forces so there’s usually no need to
perform that call after deserialization.

3.1.2 Integrators coupled to a heat bath

If you implement an integrator coupled to a heat bath, you have to expose getTemperature and setTemperature methods
or ThermodynamicState won’t have any way to recognize it, and it will add an AndersenThermostat force
when initializing the OpenMM Context object.

The base class openmmtools.integrators.ThermostatedIntegrator is a convenience class implemented for this purpose.
Inheriting from ThermostatedIntegrator will implicitly add the RestorableOpenMMObject functional-
ities as well.

>>> from openmmtools import integrators

>>> class MyIntegrator(integrators.ThermostatedIntegrator):
... def __init__(self, temperature=298.0*unit.kelvin, timestep=1.0*unit.
→˓femtoseconds):
... super().__init__(temperature, timestep)
...
>>> integrator = MyIntegrator(temperature=350*unit.kelvin)
>>> integrator.getTemperature()
Quantity(value=350.0, unit=kelvin)
>>> integrator.setTemperature(380.0*unit.kelvin)

3.1.3 Using standard Python attribute in custom integrators and forces

You should avoid having pure Python attributes when inheriting from custom OpenMM integrators and forces and
instead favor using properties that read that attribute from the underlying OpenMM object as, for example, a global
variable.
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For example, an integrator exposing the temperature should not hold a simple temperature Python attribute inter-
nally such as

class INCORRECTIntegrator(openmm.CustomIntegrator):

def __init__(self, *args, temperature=298.15*unit.kelvin, **kwargs):
super().__init__(*args, **kwargs)
self.temperature = temperature

but it expose it as a getter or a property similarly to the follow.

class CorrectIntegrator(openmm.CustomIntegrator):

def __init__(self, *args, temperature=298.15*unit.kelvin, **kwargs):
super().__init__(*args, **kwargs)
self.addGlobalVariable('temperature', temperature)

@property
def temperature(self):

return self.getGlobalVariableByName('temperature') * unit.kelvin

This is because:

1. If the parameter doesn’t affect serialization ContextCache won’t be able to distinguish between two integra-
tors that differ by that parameter, and it may return an incorrect integrator.

2. Python attribute cannot be restored by RestorableOpenMMObject since there’s no information about them
in the XML string, and thus they will be lost with serialization.

3.2 Handling (compound) thermodynamic states

In the examples that follow, we’ll use a simple ThermodynamicState, but everything applies
to CompoundThermodynamicState as well as CompoundThermodynamicState is a subclass of
ThermodynamicState.

3.2.1 Modifying a System object buried in a ThermodynamicState

Setting a thermodynamic parameter in ThermodynamicState is practically instantaneous, but modifying anything
else involves the copy of the internal System object so it can be very slow.

from openmmtools import states
from openmmtools import testsystems

system = testsystems.TolueneVacuum().system
thermo_state = states.ThermodynamicState(system, temperature=300*unit.kelvin)

# This is very fast.
thermo_state.temperature = 400.0*unit.kelvin

system = thermo_state.system # This is a copy! Changes to this System won't affect
→˓thermo_state.

(continues on next page)
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# Make your changes to system.
thermo_state.system = system # This involves another System copy.

The copies are there to ensure the consistency of ThermodynamicState internal state. If you need to consistently
modifying part of the systems during the simulation consider implementing a composable state that handle those
degrees of freedom (see section Implementing a new ComposableState).

Another thing to keep in mind is that by default the property ThermodynamicState.system will re-
turn a System containing an AndersenThermostat force. If you only use ThermodynaicState.
create_context() or the ContextCache class to create OpenMM Context objects, this shouldn’t cause
issues, but if for any reason you don’t want that thermostat you can use the getter instead of the property.

system = thermo_state.get_system(remove_thermostat=True)

3.2.2 Implementation details of compatibility checks

Internally, ThermodynamicState associates a unique hash to a System in a particular ensemble, and it compares
this hash to check for compatibility. The function that performs this task looks like this:

@classmethod
def _standardize_and_hash(cls, system):

"""Standardize the system and return its hash."""
cls._standardize_system(system)
system_serialization = openmm.XmlSerializer.serialize(system)
return system_serialization.__hash__()

The _standardize_system() functions sets the thermodynamic parameters controlled by the
ThermodynamicState to a standard value so that System that differ by only those parameters will have
identical XML serialized strings, and thus identical hashes.

The section Implementing a new ComposableState has information on how the composable states expand the concept
of compatibility to thermodynamic parameters other than temperature and pressure.

Note: As a consequence of how the compatibility hash is computed, two ThermodynamicStates to be compatible
must have Systems with the same particles and forces in the same order, or the XML serialization will be different.

3.2.3 Copying and initialization of multiple thermodynamic states

Because of some memory optimizations, copying a ThermodynamicState or a
CompoundThermodynamicState does not copy the internal System so it is practically instantaneous.
On the other hand, initializing a new ThermodynamicState or a CompoundThermodynamicState object
does involve a System copy.

thermo_state1 = states.ThermodynamicState(system, temperature=300*unit.kelvin)

# Very fast.
thermo_state2 = copy.deepcopy(thermo_state)
thermo_state2.temperature = 350*unit.kelvin

# Slow.
thermo_state2 = states.ThermodynamicState(system, temperature=350*unit.kelvin)
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The function openmmtools.states.create_thermodynamic_state_protocol takes advantage of this to make it easy to
instantiate a list of ThermodynamicState or CompoundThermodynamicState objects that differ only by
the controlled parameters.

3.3 Implementing a new ComposableState

3.3.1 The IComposableInterface

Composable states allow to control thermodynamic parameters of the simulation while masking their implementa-
tion details. There are no restrictions on the implementation details, but the class must implement the openmm-
tools.states.IComposableState interface. You can see the API docs for contract details, but here is a list of the methods.

class IComposableState:

def apply_to_system(self, system):
"""Modify an OpenMM System to be in this thermodynamic state."""

def check_system_consistency(self, system):
"""Raise AlchemicalStateError if system has different parameters."""

def apply_to_context(self, context):
"""Modify an OpenMM Context to be in this thermodynamic state."""

def _standardize_system(cls, system):
"""Modify the System to be in the standard thermodynamic state."""

def _on_setattr(self, standard_system, attribute_name, old_attribute_value):
"""Callback that checks if standard system needs to be updated after a state

→˓attribute is set."""

def _find_force_groups_to_update(self, context, current_context_state, memo)
"""Find the force groups whose energy must be recomputed after apply_to_

→˓context."""
# Optional. This is used only for optimizations.

The _standardize_systemmethod effectively determines which other states will be compatible (see also section
Implementation details of compatibility checks). The purpose of _standardize_system is to set the parameters
of the System that can be manipulated in the Context to the same value so that their XML serialization string and
their hash will be identical. Systems that after standardization are identical are assigned to the same Context by
ContextCache.get_context().

Relatedly, the callback _on_setattr() is called by CompoundThermodynamicState after a thermodynamic
parameter has been set. The method must return True if the change in the thermodynamic parameter has caused the
standard system to have a different hash. For example, in the basic ThermodynamicState class this happens when
the pressure parameter goes from None to any valid value because states in NVT and NPT are not compatible.

The method _find_force_groups_to_update is optional and related to the optimization described in Com-
puting the reduced potential of one configuration at multiple thermodynamic states.

26 Chapter 3. Advanced features and developer’s tutorial



openmmtools Documentation

3.3.2 ComposableStates that control a Force global parameter

Often, a thermodynamic parameter can be implemented with OpenMM as a global parameter added to a custom force.
For example, to alchemically soften torsions, alchemy.AbsoluteAlchemicalFactory substitute some of the
torsion potential terms using a openmm.CustomTorsionForce whose energy is multiplied by a global parameter
called lambda_torsions.

energy_function = "lambda_torsions * k*(1+cos(periodicity*theta-phase))"
custom_force = openmm.CustomTorsionForce(energy_function)
custom_force.addGlobalParameter('lambda_torsions', 1.0)
# Other force configurations.
system.addForce(custom_force)

When this is the case, the base class openmmtools.states.GlobalParameterState can be used to create
a composable state very quickly.

from openmmtools.states import GlobalParameterState

class MyComposableState(GlobalParameterState):

lambda_torsions = GlobalParameterState.GlobalParameter('lambda_torsions',
→˓standard_value=1.0)

It is possible to perform checks on the assigned value by adding a validator.

class MyComposableState(GlobalParameterState):

lambda_torsions = GlobalParameterState.GlobalParameter('lambda_torsions',
→˓standard_value=1.0)

@lambda_torsions.validator
def lambda_torsions(self, instance, new_value):

if new_value is not None and not (0.0 <= new_value <= 1.0):
raise ValueError('lambda_torsions must be between 0.0 and 1.0')

return new_value

The example above allows only values between 0.0 and 1.0 for lambda_torsions.

3.3.3 Computing the reduced potential of one configuration at multiple thermody-
namic states

When computing the potential energy of a single configuration at multiple thermodynamic states, it is often unneces-
sary to compute the whole Hamiltonian multiple times but just the terms of the Hamiltonian that change from one state
to another. OpenMM makes this possible to compute only the energy of a subset of forces through the force groups
mechanism.

force = openmm.CustomBondForce('(K/2)*(r-r0)^2;')
force.setForceGroup(5)

The utility function openmmtools.states.reduced_potential_at_states() takes advantage of forces
separated in different groups to efficiently compute the reduced potentials at the thermodynamic states.

from openmmtools import alchemy
from openmmtools import cache

(continues on next page)
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alanine = testsystems.AlchemicalAlanineDipeptide()
protocol = {'lambda_sterics': [1.0, 0.5, 0.0],

'lambda_electrostatics': [1.0, 0.5, 0.0]}
constants = {'temperature': 300*unit.kelvin}
composable_states = [alchemy.AlchemicalState.from_system(alanine.system)]
compound_states = states.create_thermodynamic_state_protocol(alanine.system, protocol,

constants, composable_
→˓states)

sampler_state = states.SamplerState(positions=alanine.positions)
reduced_potentials = states.reduced_potential_at_states(sampler_state, compound_
→˓states,

cache.global_context_cache)

In order for the optimization to take effect, the composable states must implement the method
_find_force_groups_to_update(self, context, current_context_state, memo). This
method inspects the System associated to the context and return the force groups that will have an updated energy
after the state will be changed from current_context_state to self. The memo dictionary can be use to
store the force groups to inspect in subsequent calls of the method within a reduced_potential_at_states
execution so that the System must be parsed only the first time.

3.4 Implementing a new MCMCMove

3.4.1 The MCMCMove interface

An MCMCMove requires exclusively the implementation of an apply method with the following signature (see the
API documentation for more details.

class MCMCMove(SubhookedABCMeta):

def apply(self, thermodynamic_state, sampler_state):
pass

Anything can happen inside apply as long as thermodynamic_state and sampler_state are updated cor-
rectly. It is usually a good idea to include in the constructor a context_cache argument to let the user specify how
the Context should be created and on which platform.

3.4.2 OpenMM integrators that modify the thermodnamic state

Custom OpenMM integrators can modify global variables that effectively change the thermodynamic state of the
Context.

Important: Remember to update the thermodynamic_state object correctly at the end of apply if the inte-
grator changes the thermodynamic state of the simulation.

When this is the case, it’s not possible to cast your integrator into an MCMCMove with IntegratorMove. Never-
theless, it’s still possible to take advantage of the extra features already offered by IntegratorMove by subclassing
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the openmmtools.mcmc.BaseIntegratorMove <mcmc> class. IntegratorMove inherits from this base class. An
implementation would look more or less like this (see the API documentation for the details).

class MyMove(BaseIntegratorMove):
def __init__(self, timestep, n_steps, **kwargs):

super(MyMove, self).__init__(n_steps, **kwargs)
self.timestep = timestep

def _get_integrator(self, thermodynamic_state):
return MyIntegrator(self.timestep, thermodynamic_state.temperature)

def _before_integration(self, context, thermodynamic_state):
# Optional: Any operation performed after the context
# was created but before integration.

def _after_integration(self, context, thermodynamic_state):
# Update thermodynamic_state from context parameters.
# Optional: Read statistics from context.getIntegrator() parameters.

3.4.3 Metropolized MCMCMoves

The mcmc module contains a base class for Metropolized moves as well. The following class implement an example
that simply adds the unit vector to the initial coordinates.

from openmmtools import mcmc

class AddOneVector(mcmc.MetropolizedMove):
def _propose_positions(self, initial_positions):

print('Propose new positions')
displacement = numpy.array([1.0, 1.0, 1.0]) * unit.angstrom
return initial_positions + displacement

The parent class will take care of implementing the Metropolis acceptance criteria, collecting acceptance statistics,
and updating the SamplerState correctly. The constructor accepts an optional atom_subset to limit the move
to certain atoms. In this case, the initial_positions will be the positions of the atom subset only.

>>> alanine = testsystems.AlanineDipeptideVacuum()
>>> sampler_state = states.SamplerState(alanine.positions)
>>> thermodynamic_state = states.ThermodynamicState(alanine.system, 300*unit.kelvin)
>>> move = AddOneVector(atom_subset=list(range(sampler_state.n_particles)))
>>> move.apply(thermodynamic_state, sampler_state)
Propose new positions
>>> move.n_accepted
1
>>> move.n_proposed
1
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Release History

4.1 0.17.0 - Removed Py2 support, faster exact PME treatment

4.1.1 New features

• Add GlobalParameterFunction that allows to enslave a GlobalParameter to an arbitrary function
of controlling

variables (#380). - Allow to ignore velocities when building the dict representation of a SamplerState. This can
be useful for example to save bandwidth when sending a SamplerState over the network and velocities are not
required (#386). - Add DoubleWellDimer_WCAFluid and DoubleWellChain_WCAFluid test

systems (#389).

4.1.2 Enhancements

• New implementation of the exact PME handling that uses the parameter offset feature in OpenMM 7.3. This
comes with a

considerable speed improvement over the previous implementation (#380). - Exact PME is now the default
for the alchemical_pme_treatment parameter in the constructor of AbsoluteAchemicalFactory
(#386). - It is now possible to have multiple composable states exposing the same attributes/getter/setter in a
CompoundThermodynamicState (#380).

4.1.3 Bug fixes

• Fixed a bug involving the NoseHooverChainVelocityVerletIntegrator with System with con-
straints. The constraints

were not taken into account when calculating the number of degrees of freedom resulting in the temperature not con-
verging to the target value. (#384) - Fixed a bug affecting reduced_potential_at_states when computing
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the reduced potential of systems in different ‘‘AlchemicalState‘‘s when the same alchemical parameter appeared in
force objects split in different force groups. (#385)

4.1.4 Deprecated and API breaks

• Python 2 is not supported anymore.

• The update_alchemical_charges attribute of ‘‘AlchemicalState‘, which was deprecated in 0.16.0, has
now been removed

since it doesn’t make sense with the new parameter offset implementation. - The methods AlchemicalState.
get_alchemical_variable and AlchemicalState.set_alchemical_variable have been
deprecated. Use AlchemicalState.get_alchemical_function and AlchemicalState.
set_alchemical_function instead.

4.2 0.16.0 - Py2 deprecated, GlobalParameterState class, Sampler-
State reads CVs

4.2.1 New features

• Add ability for SamplerState to access new OpenMM Custom CV Force Variables (#362).

• SamplerState.update_from_context now has keywords to support finer grain updating from the
Context. This is only recommended for advanced users (#362).

• Added the new class states.GlobalParameterState designed to simplify the implementation of com-
posable states that control global variables (#363).

• Allow restraint force classes to be controlled by a parameter other than lambda_restraints. This will
enable multi-restraints simulations (#363).

4.2.2 Enhancements

• Global variables of integrators are now automatically copied over the integrator returned by
ContextCache.get_context. It is possible to specify exception through ContextCache.
INCOMPATIBLE_INTEGRATOR_ATTRIBUTES (#364).

4.2.3 Others

• Integrator MCMCMove``s now attempt to recover from NaN automatically by
default (with ``n_restart_attempts set to 4) (#364).

4.2.4 Deprecated

• Python2 is officially deprecated. Support will be dropped in future versions.

• Deprecated the signature of IComposableState._on_setattr to fix a bug where the objects were tem-
porarily left in an inconsistent state when an exception was raised and caught.

• Deprecated update_alchemical_charges in AlchemicalState in anticipation of the new im-
plementation of the exact PME that will be based on the NonbondedForce offsets rather than
updateParametersInContext().
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4.3 0.15.0 - Restraint forces

• Add radially-symmetric restraint custom forces (#336).

• Copy Python attributes of integrators on deepcopy() (#336).

• Optimization of states.CompoundThermodynamicState deserialization (#338).

• Bugfixes (#332, #343).

4.4 0.14.0 - Exact treatment of alchemical PME electrostatics, water
cluster test system, optimizations

4.4.1 New features

• Add a WaterCluster testsystem (#322)

• Add exact treatment of PME electrostatics in alchemy.AbsoluteAlchemicalFactory. (#320)

• Add method in ThermodynamicState for the efficient computation of the reduced potential at a list of
states. (#320)

4.4.2 Enhancements

• When a SamplerState is applied to many ‘‘Context‘‘s, the units are stripped only once for optimization.
(#320)

4.4.3 Bug fixes

• Copy thermodynamic state on compound state initialization. (#320)

4.5 0.13.4 - Barostat/External Force Bugfix, Restart Robustness

4.5.1 Bug fixes

• Fixed implementation bug where CustomExternalForce restraining atoms to absolute coordinates caused
an issue when a Barostat was used (#310)

4.5.2 Enhancements

• MCMC Integrators now attempt to re-initialize the Context object on the last restart attempt when NaN’s are
encountered. This has internally been shown to correct some instances where normally resetting positions does
not work around the NaN’s. This is a slow step relative to just resetting positions, but better than simulation
crashing.
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4.6 0.13.3 - Critical Bugfix to SamplerState Context Manipulation

4.6.1 Critical Fixes

• SamplerState.apply_to_context() applies box vectors before positions are set to prevent a bug on
non-Reference OpenMM Platforms which can re-order system atoms. (#305)

4.6.2 Additional Fixes

• LibYAML is now optional (#304)

• Fix AppVeyor testing against Python 3.4 (now Python 3.5/3.6 and NumPy 1.12) (#307)

• Release History now included in online Docs

4.7 0.13.2 - SamplerState Slicing and BitWise And/Or Ops

Added support for SamplerState slicing (#298) Added bit operators and and or to math_eval (#301)

4.8 0.13.1 - Bugfix release

• Fix pickling of CompoundThermodynamicState (#284).

• Add missing term to OBC2 GB alchemical Force (#288).

• Generalize forcefactories.restrain_atoms() to non-protein receptors (#290).

• Standardize integrator global variables in ContextCache (#291).

4.9 0.13.0 - Alternative reaction field models, Langevin splitting MCM-
CMove

4.9.1 New Features

• Storage Interface module with automatic disk IO handling

• Option for shifted or switched Reaction Field

• LangevinSplittingDynamic MCMC move with specifiable sub step ordering

• Nose-Hoover Chain Thermostat

4.9.2 Bug Fixes

• Many doc string cleanups

• Tests are based on released versions of OpenMM

• Tests also compare against development OpenMM, but do not fail because of it

• Fixed bug in Harmonic Oscillator tests’ error calculation
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• Default collision rate in Langevin Integrators now matches docs

4.10 0.12.1 - Add virtual sites support in alchemy

• Fixed AbsoluteAlchemicalFactory treatment of virtual sites that were previously ignored (#259).

• Add possibility to add ions to the WaterBox test system (#259).

4.11 0.12.0 - GB support in alchemy and new forces module

4.11.1 New features

• Add AbsoluteAlchemicalFactory support for all GB models (#250)

• Added forces and forcefactories modules implementing UnishiftedReactionFieldForce
and replace_reaction_field respectively. The latter has been moved from
AbsoluteAlchemicalFactory (#253)

• Add restrain_atoms to restrain molecule conformation through an harmonic restrain (#255)

4.11.2 Bug fixes

• Bugfix for testsystems that use implicit solvent (#250)

• Bugfix for ContextCache: two consecutive calls retrieve the same Context with same thermodynamic
state and no integrator (#252)

4.12 0.11.2 - Bugfix release

• Hotfix in fringe Python2/3 compatibility issue when using old style serialization systems in Python 2

4.13 0.11.1 - Optimizations

• Adds Drew-Dickerson DNA dodecamer test system (#223)

• Bugfix and optimization to ContextCache (#235)

• Compress serialized ThermodynamicState strings for speed and size (#232)

• Backwards compatible with uncompressed serialized ThermodynamicStates

4.14 0.11.0 - Conda forge installation

4.14.1 New Features

• LangevinIntegrator now sets measure_heat=False by default for increased performance (#211)
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• AbsoluteAlchemicalFactory now supports disable_alchemical_dispersion_correction
to prevent 600x slowdowns with nonequilibrium integration (#218)

• We now require conda-forge as a dependency for testing and deployment (#216)

• Conda-forge added as channel to conda packages

4.15 0.10.0 - Optimizations of ThermodynamicState, renamed Al-
chemicalFactory

• BREAKS API: Renamed AlchemicalFactory to AbsoluteAlchemicalFactory (#206)

• Major optimizations of ThermodynamicState (#200, #205)

– Keep in memory only a single System object per compatible state

– Fast copy/deepcopy

– Enable custom optimized serialization for multiple states

• Added readthedocs documentation (#191)

• Bugfix for serialization of context when NaN encountered (#199)

• Added tests for Python 3.6 (#184)

• Added tests for integrators (#186, #187)

4.16 0.9.4 - Nonequilibrium integrators overhaul

4.16.1 Major changes

• Overhaul of LangevinIntegrator and subclasses to better support nonequilibrium integrators

• Add true reaction-field support to AlchemicalFactory

• Add some alchemical test systems

4.16.2 Updates to openmmtools.integrators.LangevinIntegrator and
friends

API-breaking changes

• The nonequilibrium integrators are now called AlchemicalNonequilibriumLangevinIntegrator
and ExternalPerturbationLangevinIntegrator, and both are subclasses of a common
NonequilibriumLangevinIntegrator that provides a consistent interface to setting and getting
protocol_work

• AlchemicalNonequilibriumLangevinIntegrator now has a default alchemical_functions
to eliminate need for every test to treat it as a special case (#180)

• The get_protocol_work() method allows you to retrieve the protocol work from any
NonequilibriumLangevinIntegrator subclass and returns a unit-bearing work. The optional
dimensionless=True argument returns a dimensionless float in units of kT.
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• Integrator global variables now store all energies in natural OpenMM units (kJ/mol) but the new accessor meth-
ods (see below) should b used instead of getting integrator global variables for work and heat. (#181)

• Any private methods for adding steps to the integrator have been prepended with _ to hide them from the public
API.

New features

• Order of arguments for all LangevinIntegrator derivatives matches openmm.LangevinIntegrator
so it can act as a drop-in replacement. (#176)

• The get_shadow_work() and get_heat()methods are now available for any LangevinIntegrator
subclass, as well as the corresponding properties shadow_work and heat. The functions also support
dimensionless=True. (#163)

• The shadow_work and heat properties were added to all LangevinIntegrator subclasses, returning the values
of these properties (if the integrator was constructed with the appropriate measure_shadow_work=True
or measure_heat=True flags) as unit-bearing quantities

• The get_protocol_work() and get_total_work() methods are now available
for any NonequilibriumLangevinIntegrator, returning unit-bearing quantities un-
less dimensionless=True is provided in which case they return the work in implicit
units of kT. get_total_work() requires the integrator to have been constructed with
measure_shadow_work=True.

• The protocol_work and total_work properties were added to all
NonequilibriumLangevinIntegrator subclasses, and return the unit-bearing work quantities.
total_work requires the integrator to have been constructed with measure_shadow_work=True.

• The subclasses have been reworked to support any kwargs that the base classes support, and defaults have all
been made consistent.

• Various reset() methods have been added to reset statistics for all LangevinIntegrator subclasses.

• All custom integrators support .pretty_format() and .pretty_print() with optional highlighting of
specific step types.

Bugfixes

• Zero-step perturbations now work correctly (#177)

• AlchemicalNonequilibriumLangevinIntegrator now correctly supports multiple H steps.

Internal changes

• Adding new LangevinIntegrator step methods now uses a self._register_step_method(step_string,
callback_function, supports_force_groups=False) call to simplify this process.

• Code duplication has been reduced through the use of calling base class methods whenever possible.

• run_nonequilibrium_switching() test now uses BAR to test dragging a harmonic oscillator and tests
a variety of integrator splittings (["O { V R H R V } O", "O V R H R V O", "R V O H O V
R", "H R V O V R H"]).

• Integrator tests use deterministic PME and mixed precision when able.
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4.16.3 Updates to openmmtools.alchemy.AlchemicalFactory

• Reaction field electrostatics now removes the shift, setting c_rf = 0.

• A convenience method AlchemicalFactory.replace_reaction_field() has been added to allow fully-
interacting systems to be modified to force c_rf = 0 by recoding reaction-field electrostatics as a
CustomNonbondedForce

4.16.4 New openmmtools.testsystems classes

• AlchemicalWaterBox was added, which has the first water molecule in the system alchemically modified
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Modules

5.1 Test Systems

openmmtools.testsystems contains a variety of test systems useful for benchmarking, validation, testing, and
debugging.

5.1.1 Analytically tractable systems

These test systems are simple test systems where some properties are analytically tractable.

HarmonicOscillator
PowerOscillator
ConstraintCoupledHarmonicOscillator
HarmonicOscillatorArray
IdealGas
MolecularIdealGas
Diatom
CustomExternalForcesTestSystem
CustomGBForceSystem
LennardJonesPair

5.1.2 Clusters and simple fluids

DiatomicFluid
UnconstrainedDiatomicFluid
ConstrainedDiatomicFluid
DipolarFluid
UnconstrainedDipolarFluid

Continued on next page
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Table 2 – continued from previous page
ConstrainedDipolarFluid
LennardJonesCluster
LennardJonesFluid
LennardJonesFluidTruncated
LennardJonesFluidSwitched
LennardJonesGrid
CustomLennardJonesFluidMixture
WCAFluid
DoubleWellDimer_WCAFluid
DoubleWellChain_WCAFluid
TolueneVacuum
TolueneImplicit
TolueneImplicitHCT
TolueneImplicitOBC1
TolueneImplicitOBC2
TolueneImplicitGBn
TolueneImplicitGBn2
MethanolBox
WaterCluster

5.1.3 Solids

SodiumChlorideCrystal

5.1.4 Water boxes

WaterBox
FlexibleWaterBox
FlexibleReactionFieldWaterBox
FlexiblePMEWaterBox
PMEWaterBox
GiantFlexibleWaterBox
FourSiteWaterBox
FiveSiteWaterBox
DischargedWaterBox
FlexibleDischargedWaterBox
GiantFlexibleDischargedWaterBox
DischargedWaterBoxHsites
AlchemicalWaterBox
WaterCluster

5.1.5 Peptide and protein systems

AlanineDipeptideVacuum
AlanineDipeptideImplicit
AlanineDipeptideExplicit
DHFRExplicit

Continued on next page
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Table 5 – continued from previous page
LysozymeImplicit
SrcImplicit
SrcExplicit
SrcExplicitReactionField

5.1.6 Complexes

HostGuestVacuum
HostGuestImplicit
HostGuestImplicitHCT
HostGuestImplicitOBC1
HostGuestImplicitOBC2
HostGuestImplicitGBn
HostGuestImplicitGBn2
HostGuestExplicit

5.1.7 Polarizable test systems

AMOEBAIonBox
AMOEBAProteinBox

5.1.8 Test system base classes

These are base classes you can inherit from to develop new test systems.

TestSystem

5.2 Integrators

openmmtools.integrators provides a number of high quality integrators implemented using OpenMM’s Cus-
tomIntegrator facility.

The integrators provided in the openmmtools.integrators package subclass the OpenMM CustomIntegrator,
providing a more full-featured Pythonic class wrapping the Swig-wrapped CustomIntegrator.

Warning: OpenMM’s CompoundIntegrator caches OpenMM Integrator objects, but can only return
the SWIG-wrapped base integrator object if you call CompoundIntegrator.getIntegrator() or
CompoundIntegrator.getCurrentIntegrator(). If you want to hold onto one of the Python sub-
classes we make available in openmmtools.integrators, you will need to cache the original Python in-
tegrator you create. You can still use either integrator.step() call, but you MUST MAKE SURE THAT
INTEGRATOR IS SELECTED currently in CompoundIntegrator.setCurrentIntegrator(index)
before calling integrator.step() or else the behavior is undefined.
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5.2.1 Langevin integrators

The entire family of Langevin integrators described by Trotter splittings of the propagator is available. These integra-
tors also support multiple-timestep force splittings and Metropolization. In addition, we provide special subclasses for
several popular classes of Langevin integrators.

Note: We highly recommend the excellent geodesic BAOAB (g-BAOAB) integrator of Leimkuhler and Matthews
for all equilibrium simulations where only equilibrium configurational properties are of interest. This integrator (g-
BAOAB) has extraordinarily good properties for biomolecular simulation.

LangevinIntegrator
VVVRIntegrator
BAOABIntegrator
GeodesicBAOABIntegrator
GHMCIntegrator

5.2.2 Nonequilibrium integrators

These integrators are available for nonequilibrium switching simulations, and provide additional features for measur-
ing protocol, shadow, and total work.

NonequilibriumLangevinIntegrator
AlchemicalNonequilibriumLangevinIntegrator
ExternalPerturbationLangevinIntegrator

5.2.3 Miscellaneous integrators

Other miscellaneous integrators are available.

MTSIntegrator
DummyIntegrator
GradientDescentMinimizationIntegrator
VelocityVerletIntegrator
AndersenVelocityVerletIntegrator
NoseHooverChainVelocityVerletIntegrator
MetropolisMonteCarloIntegrator
HMCIntegrator

5.2.4 Mix-ins

A number of useful mix-ins are provided to endow integrators with additional features.
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PrettyPrintableIntegrator
ThermostatedIntegrator

5.2.5 Base classes

New integrators can inherit from these base classes to inherit extra features

ThermostatedIntegrator
NonequilibriumLangevinIntegrator

5.3 Thermodynamic and Sampler States

The module openmmtools.states contains classes to maintain a consistent state of the simulation.

• ThermodynamicState: Represent and manipulate the thermodynamic state of OpenMM System and Con-
text objects.

• SamplerState: Represent and cache the state of the simulation that changes when the System is integrated.

• CompoundThermodynamicState: Extend the ThermodynamicState to handle parameters other than
temperature and pressure through the implementations of the IComposableState abstract class.

• GlobalParameterState: An implementation of IComposableState specialized to control OpenMM
forces’ global parameters.

• GlobalParameterFunction: Allow enslaving a global parameter to arbitrary variables and mathematical
expressions.

5.3.1 States

ThermodynamicState
SamplerState
CompoundThermodynamicState
IComposableState
GlobalParameterFunction
GlobalParameterState

5.4 Cache

The module openmmtools.cache implements a shared LRU cache for OpenMM Context objects that tries to
minimize the number of objects in memory at the same time.

5.4.1 Cache objects

LRUCache
ContextCache
global_context_cache
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5.5 Markov chain Monte Carlo (MCMC)

openmmtools provides an extensible Markov chain Monte Carlo simulation framework.

This module provides a framework for equilibrium sampling from a given thermodynamic state of a biomolecule using
a Markov chain Monte Carlo scheme.

It currently offer supports for

• Langevin dynamics (assumed to be free of integration error; use at your own risk]),

• hybrid Monte Carlo,

• generalized hybrid Monte Carlo, and

• Monte Carlo barostat moves,

which can be combined through the SequenceMove and WeightedMove classes.

By default, the MCMCMoves use the fastest OpenMM platform available and a shared global ContextCache that
minimizes the number of OpenMM Context objects that must be maintained at once. The examples below show
how to configure these aspects.

Note: To use the ContextCache on the CUDA platform, the NVIDIA driver must be set to shared mode to
allow the process to create multiple GPU contexts.

Using the MCMC framework requires importing ThermodynamicState and SamplerState from
openmmtools.states:

from simtk import unit
from openmmtools import testsystems, cache
from openmmtools.states import ThermodynamicState, SamplerState

Create the initial state (thermodynamic and microscopic) for an alanine dipeptide system in vacuum.

test = testsystems.AlanineDipeptideVacuum()
thermodynamic_state = ThermodynamicState(system=test.system, temperature=298*unit.
→˓kelvin)
sampler_state = SamplerState(positions=test.positions)

Create an MCMC move to perform at every iteration of the simulation, and initialize a sampler instance.

ghmc_move = GHMCMove(timestep=1.0*unit.femtosecond, n_steps=50)
langevin_move = LangevinDynamicsMove(n_steps=10)
sampler = MCMCSampler(thermodynamic_state, sampler_state, move=ghmc_move)

You can combine them to form a sequence of moves

sequence_move = SequenceMove([ghmc_move, langevin_move])
sampler = MCMCSampler(thermodynamic_state, sampler_state, move=sequence_move)

or create a move that selects one of them at random with given probability at each iteration.

weighted_move = WeightedMove([(ghmc_move, 0.5), (langevin_move, 0.5)])
sampler = MCMCSampler(thermodynamic_state, sampler_state, move=weighted_move)

By default the MCMCMove use a global ContextCache that creates Context on the fastest available OpenMM plat-
form. You can configure the default platform to use before starting the simulation
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reference_platform = openmm.Platform.getPlatformByName('Reference')
cache.global_context_cache.platform = reference_platform
cache.global_context_cache.time_to_live = 10 # number of read/write operations

Minimize and run the simulation for few iterations.

sampler.minimize()
sampler.run(n_iterations=2)

If you don’t want to use a global cache, you can create local ones.

local_cache1 = cache.ContextCache(capacity=5, time_to_live=50)
local_cache2 = cache.ContextCache(platform=reference_platform, capacity=1)
sequence_move = SequenceMove([HMCMove(), LangevinDynamicsMove()], context_cache=local_
→˓cache1)
ghmc_move = GHMCMove(context_cache=local_cache2)

If you don’t want to cache Context at all but create one every time, you can use the DummyCache.

dummy_cache = cache.DummyContextCache(platform=reference_platform)
ghmc_move = GHMCMove(context_cache=dummy_cache)

This book by Jun Liu is an excellent overview of Markov chain Monte Carlo:

Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2008.

5.5.1 MCMC samplers

An MCMC sampler driver is provided that can either utilize a programmed sequence of moves or draw from a weighted
set of moves.

MCMCSampler
SequenceMove
WeightedMove

5.5.2 MCMC move types

A number of MCMC component move types that can be arranged into groups or subclassed are provided.

MCMCMove
BaseIntegratorMove
MetropolizedMove
IntegratorMove
LangevinDynamicsMove
LangevinSplittingDynamicsMove
GHMCMove
HMCMove
MonteCarloBarostatMove
MCDisplacementMove
MCRotationMove
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5.6 Sampling from multiple alchemical (or other thermodynamic)
states

openmmtools provides several schemes for sampling from multiple thermodynamic states within a single calcula-
tion:

• MultistateSampler: Independent simulations at distinct thermodynamic states

• ReplicaExchangeSampler: Replica exchange among thermodynamic states (also called Hamiltonian ex-
change if only the Hamiltonian is changing)

• SAMSSampler: Self-adjusted mixture sampling (also known as optimally-adjusted mixture sampling)

While the thermodynamic states sampled usually differ only in the alchemical parameters, other thermodynamic pa-
rameters (such as temperature) can be modulated as well at intermediate alchemical states. This may be useful in, for
example, experimenting with ways to reduce correlation times.

In all of these schemes, one or more replicas is simulated. Each iteration includes the following phases: | * Allow
replicas to switch thermodynamic states (optional) | * Allow replicas to sample a new configuration using Markov
chain Monte Carlo (MCMC) | * Each replica computes the potential energy of the current configuration in multiple
thermodynamic states | * Data is written to disk

Below, we describe some of the aspects of these samplers.

5.6.1 MultiStateSampler: Independent simulations at multiple thermodynamic
states

The MultiStateSampler allows independent simulations from multiple thermodynamic states to be sampled. In
this case, the MCMC scheme is used to propagate each replica by sampling from a fixed thermodynamic state.

𝑠𝑘,𝑛+1 = 𝑠𝑘,𝑛

𝑥𝑘,𝑛+1 ∼ 𝑝(𝑥|𝑠𝑘,𝑛+1)

An inclusive “neighborhood” of thermodynamic states around this specified state can be used to define which ther-
modynamic states the reduced potential should be computed for after each iteration. If all thermodynamic states are
included in this neighborhood (the default), the MBAR scheme :cite:‘Shirts2008statistically‘ can be used to opti-
mally estimate free energies and uncertainties. If a restricted neighborhood is used (in order to reduce the amount
of time spent in the energy evaluation stage), a variant of the L-WHAM (local weighted histogram analysis method)
:cite:‘kumar1992weighted‘ is used to extract an estimate from all available information.

5.6.2 ReplicaExchangeSampler: Replica exchange among thermodynamic
states

The ReplicaExchangeSampler implements a Hamiltonian replica exchange scheme with Gibbs sampling
:cite:‘Chodera2011‘ to sample multiple thermodynamic states in a manner that improves mixing of the overall
Markov chain. By allowing replicas to execute a random walk in thermodynamic state space, correlation times may be
reduced when sampling certain thermodynamic states (such as those with alchemically-softened potentials or elevated
temperatures).

In the basic version of this scheme, a proposed swap of configurations between two alchemical states, i and j, made by
comparing the energy of each configuration in each replica and swapping with a basic Metropolis criteria of

𝑃accept(𝑖, 𝑥𝑖, 𝑗, 𝑥𝑗) = min
{︁

1, 𝑒−[𝑢𝑖(𝑥𝑗)+𝑢𝑗(𝑥𝑖)]

𝑒−[𝑢𝑖(𝑥𝑖)+𝑢𝑗(𝑥𝑗)]

= min
{︁

1, exp [∆𝑢𝑗𝑖(𝑥𝑖) + ∆𝑢𝑖𝑗(𝑥𝑗)]
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where 𝑥 is the configuration of the subscripted states 𝑖 or 𝑗, and 𝑢 is the reduced potential energy. While this scheme is
typically carried out on neighboring states only, we also implement a much more efficient form of Gibbs sampling in
which many swaps are attempted to generate an approximately uncorrelated sample of the state permutation over all 𝐾
:cite:‘Chodera2011‘. This speeds up mixing and reduces the total number of samples needed to produce uncorrelated
samples.

5.6.3 SAMSSampler: Self-adjusted mixture sampling

The SAMSSampler implements self-adjusted mixture sampling (SAMS; also known as optimally adjusted mixture
sampling) :cite:‘Tan2017:SAMS‘. This combines one or more replicas that sample from an expanded ensemble with
an asymptotically optimal Wang-Landau-like weight update scheme.

𝑠𝑘,𝑛+1 = 𝑝(𝑠|𝑥𝑘,𝑛)

𝑥𝑘,𝑛+1 ∼ 𝑝(𝑥|𝑠𝑘,𝑛+1)

SAMS state update schemes

Several state update schemes are available:

• global-jump (default): The sampler can jump to any thermodynamic state (RECOMMENDED)

• restricted-range-jump: The sampler can jump to any thermodynamic state within the specified local
neighborhood (EXPERIMENTAL; DISABLED)

• local-jump: Only proposals within the specified neighborhood are considered, but rejection rates may be
high (EXPERIMENTAL; DISABLED)

SAMS Locality

The local neighborhood is specified by the locality parameter. If this is a positive integer, the neighborhood will be
defined by state indices [k - locality, k + locality]. Reducing locality will restrict the range of states
for which reduced potentials are evaluated, which can speed up the energy evaluation stage of each iteration at the cost
of restricting the amount of information available for free energy estimation. By default, the locality is global,
such that energies at all thermodynamic states are computed; this allows the use of MBAR in data analysis.

SAMS weight adaptation algorithm

SAMS provides two ways of accumulating log weights each iteration:

• optimal accumulates weight only in the currently visited state s

• rao-blackwellized accumulates fractional weight in all states within the energy evaluation neighborhood

SAMS initial weight adaptation stage

Because the asymptotically-optimal weight adaptation scheme works best only when the log weights are close to
optimal, a heuristic initial stage is used to more rapidly adapt the log weights before the asymptotically optimal
scheme is used. The behavior of this first stage can be controlled by setting two parameters:

• gamma0 controls the initial rate of weight adaptation. By default, this is 1.0, but can be set larger (e.g., 10.0) if
the free energy differences between states are much larger.

• flatness_threshold controls the number of (fractional) visits to each thermodynamic state that must be
accumulated before the asymptotically optimal weight adaptation scheme is used.
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5.7 Alchemical factories

openmmtools.alchemy contains factories for generating alchemically-modified versions of OpenMM System
objects for use in alchemical free energy calculations.

5.7.1 Absolute alchemical factories

Absolute alchical factories modify the System object to allow part of the system to be alchemically annihilated or
decoupled. This is useful for computing free energies of transfer, solvation, or binding for small molecules.

AlchemicalFunction
AlchemicalState
AbsoluteAlchemicalFactory

5.7.2 Relative alchemical factories

Coming soon!

5.8 Forces

The module openmmtools.forces implements custom forces that are not natively found in OpenMM.

5.8.1 Restraint Force Classes

RadiallySymmetricRestraintForce
RadiallySymmetricCentroidRestraintForce
RadiallySymmetricBondRestraintForce
HarmonicRestraintForceMixIn
HarmonicRestraintForce
HarmonicRestraintBondForce
FlatBottomRestraintForceMixIn
FlatBottomRestraintForce
FlatBottomRestraintBondForce

5.8.2 Useful Custom Forces

UnshiftedReactionFieldForce
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5.8.3 Utility functions

iterate_forces
find_forces

5.8.4 Exceptions

MultipleForcesError
NoForceFoundError

5.9 Force Factories

The module openmmtools.forcefactories implements utility methods and factories to configure system
forces.

5.9.1 Force Factories

replace_reaction_field
restrain_atoms

5.10 Storage

This submodule is a user-friendly storage driver which relies on two major classes from the user perspective:
StorageIODriver and StorageInterface

5.10.1 StorageIODriver

The StorageIODriver is the abstract base class which handles IO operations on disk with the real data. Derived
classes from this handle the specific storage medium, like NetCDF. This class tracks all the known variables, and
where they are on the disk. However, because the abstract class cannot know how the derived class actually interacts
with the disk, it is up to the derived class to know how each variable writes to disk.

The NetCDFIODriver is the derived StorageIODriver for NetCDF storage. The NetCDFIODriver handles
the top level file operations and keeps track of where each variable and group (equivalent to a directory) is on the disk.
Read/Write operations are handed off to the individual NCVariableCodec classes which interpret and write to file.

The NCVariableCodec is an abstract base class which defines how data is passed to and from the disk. Its derived
classes handled interpreting the specific types of data we want to store and read from disk, e.g. ints, lists, np.
arrays etc. Each derived NCVariableCodec enacts is own codec to know how to format the data type for storage
on disk, and how to read that data back from disk, converting it to the correct type.

The StorageIODriver’s and the StorageInterface work on the principal of not knowing or caring what is
on the disk until the user first attempt to access it, the process of initial interaction with the disk is called “Binding.”
Variables and directories are considered “unbound” if they have not accessed the disk yet, and “bound” if they have.
This bound/unbound mechanism is to reduce the amount of IO actions to disk, which is a slow process relative to the
main code.
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StorageIODriver
NetCDFIODriver
NCVariableCodec

5.10.2 Binding

Unbound variables and directories do not know what type of data they will handle, and only store where on the disk
data will be accessed. Upon the first attempt to read/write/append, a binding action occurs. The variables check if
there is already data on the disk at the known location, what happens next depends on what operation was called: * If
read and on disk:

1. Determine the codec the variable will use.

2. Fetch data, only accept data the codec can interpret.

• If read and NOT on disk: Raise error.

• If write/append and on disk:

1. Ensure data to write is compatible with codec that was used to store data.

2. Ensure data to store is of the same shape (for non-scalar data)

3. Store new data.

• If write/append and not on disk:

1. Allocate storage on disk

2. Store new data

The variable is now considered “bound” and there are some checks which ensure new data can now be stored on this
variable.

5.10.3 StorageInterface

StorageInterface (SI) is a layer which runs on top of a provided StorageIODriver to create an way for
users to interface with the disk with as minimal effort as possible. Variables and directories are treated as user defined
properties of the SI, which then those properties can also be given user defined properties to point to other variables
below it. E.g. SI.mydir.myvar creates a directory object called mydir at the top level of the SI object on disk,
then myvar is the variable inside mydir on disk. The depth of this can be arbitrary. None of the user defined
properties are bound until the first read/write/append operation, which is done with .read() .write() and .
append() functions respectively.

5.10.4 StorageInterfaceDirVar

StorageInterfaceDirVar (SIDV) is the class which is assigned to each of the user defined properties in the SI
are attached to. This class is what hooks into the StorageIODriver and passes the instructions to create/manage
variables and handle any other sub-directories/variables attached to it.

StorageInterface
StorageInterfaceDirVar
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5.11 Miscellaneous Utilities

openmmtools.utils provides a number of useful utilities for working with OpenMM.

5.11.1 Timing functions

time_it
with_timer
Timer

5.11.2 Temporary directories

temporary_directory

5.11.3 Symbolic mathematics

sanitize_expression
math_eval

5.11.4 Quantity functions

is_quantity_close

5.11.5 OpenMM Platform utilities

get_available_platforms
get_fastest_platform

5.11.6 Serialization utilities

serialize
deserialize

5.11.7 Metaclass utilities

with_metaclass
SubhookedABCMeta
find_all_subclasses
find_subclass

5.11.8 OpenMM custom object utilities
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RestorableOpenMMObject

openmmtools.scripts contains scripts that may be useful in testing your OpenMM installation is functioning
correctly:

5.12 Command-line scripts

./test-openmm-platforms will test the various platforms available to OpenMM to ensure that all systems
in openmmtools.testsystems give consistent potential energies. If differences in energies in excess of
ENERGY_TOLERANCE (default: 0.06 kcal/mol) are detected, these systems will be serialized to XML for further
debugging.
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Indices and tables

• genindex

• modindex

• search
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